Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.829
Filtrar
1.
Microb Biotechnol ; 17(4): e14460, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38635191

RESUMO

Aromatic compounds are used in pharmaceutical, food, textile and other industries. Increased demand has sparked interest in exploring biotechnological approaches for their sustainable production as an alternative to chemical synthesis from petrochemicals or plant extraction. These aromatic products may be toxic to microorganisms, which complicates their production in cell factories. In this study, we analysed the toxicity of multiple aromatic compounds in common production hosts. Next, we screened a subset of toxic aromatics, namely 2-phenylethanol, 4-tyrosol, benzyl alcohol, berberine and vanillin, against transporter deletion libraries in Escherichia coli and Saccharomyces cerevisiae. We identified multiple transporter deletions that modulate the tolerance of the cells towards these compounds. Lastly, we engineered transporters responsible for 2-phenylethanol tolerance in yeast and showed improved 2-phenylethanol bioconversion from L-phenylalanine, with deletions of YIA6, PTR2 or MCH4 genes improving titre by 8-12% and specific yield by 38-57%. Our findings provide insights into transporters as targets for improving the production of aromatic compounds in microbial cell factories.


Assuntos
Álcool Feniletílico , Saccharomyces cerevisiae , Álcool Benzílico , Biotecnologia , Escherichia coli , Proteínas de Membrana Transportadoras , Compostos Orgânicos
2.
Mol Biol Rep ; 51(1): 559, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643306

RESUMO

BACKGROUND: Methylprednisolone (MP) is a pharmaceutical agent employed in the management of Leukemia, which is a systemic malignancy that arises from abnormalities in the hematological system. Numerous investigations in the field of cancer research have directed their attention towards propolis, a natural substance with significant potential as a treatment-supportive agent. Its utilization aims to mitigate the potential adverse effects associated with chemotherapy medications. The objective of this study was to examine the impact of olive oil-based propolis (OEP) and caffeic acid phenethyl ester (CAPE) on the treatment of acute myeloid leukemia, as well as to determine if they exhibit a synergistic effect when combined with the therapeutic support product methylprednisolone. METHODS AND RESULTS: The proliferation of HL-60 cells was quantified using the WST-8 kit. The PI Staining technique was employed to do cell cycle analysis of DNA in cells subjected to OEP, CAPE, and MP, with subsequent measurement by flow cytometry. The apoptotic status of cells was determined by analyzing them using flow cytometry after staining with the Annexin V-APC kit. The quantification of apoptotic gene expression levels was conducted in HL-60 cells. In HL-60 cells, the IC50 dosages of CAPE and MP were determined to be 1 × 10- 6 M and 5 × 10- 4 M, respectively. The HL-60 cells were subjected to apoptosis and halted in the G0/G1 and G2/M phases of the cell cycle after being treated with MP, CAPE, and OEP. CONCLUSIONS: Propolis and its constituents have the potential to serve as effective adjunctive therapies in chemotherapy.


Assuntos
Ácidos Cafeicos , Leucemia Mieloide Aguda , Álcool Feniletílico/análogos & derivados , Própole , Humanos , Própole/farmacologia , Azeite de Oliva , Metilprednisolona/farmacologia , Apoptose
3.
Fungal Biol ; 128(2): 1664-1674, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38575239

RESUMO

Although tyrosol is a quorum-sensing molecule of Candida species, it has antifungal activity at supraphysiological concentrations. Here, we studied the effect of tyrosol on the physiology and genome-wide transcription of Aspergillus nidulans to gain insight into the background of the antifungal activity of this compound. Tyrosol efficiently reduced germination of conidia and the growth on various carbon sources at a concentration of 35 mM. The growth inhibition was fungistatic rather than fungicide on glucose and was accompanied with downregulation of 2199 genes related to e.g. mitotic cell cycle, glycolysis, nitrate and sulphate assimilation, chitin biosynthesis, and upregulation of 2250 genes involved in e.g. lipid catabolism, amino acid degradation and lactose utilization. Tyrosol treatment also upregulated genes encoding glutathione-S-transferases (GSTs), increased specific GST activities and the glutathione (GSH) content of the cells, suggesting that A. nidulans can detoxify tyrosol in a GSH-dependent manner even though this process was weak. Tyrosol did not induce oxidative stress in this species, but upregulated "response to nutrient levels", "regulation of nitrogen utilization", "carbon catabolite activation of transcription" and "autophagy" genes. Tyrosol may have disturbed the regulation and orchestration of cellular metabolism, leading to impaired use of nutrients, which resulted in growth reduction.


Assuntos
Antifúngicos , Aspergillus nidulans , Álcool Feniletílico/análogos & derivados , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Transcriptoma , Glutationa/genética , Glutationa/metabolismo , Glutationa/farmacologia , Carbono/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
4.
Plant Cell Rep ; 43(5): 127, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652203

RESUMO

KEY MESSAGE: This study identified 16 pyridoxal phosphate-dependent decarboxylases in olive at the whole-genome level, conducted analyses on their physicochemical properties, evolutionary relationships and characterized their activity. Group II pyridoxal phosphate-dependent decarboxylases (PLP_deC II) mediate the biosynthesis of characteristic olive metabolites, such as oleuropein and hydroxytyrosol. However, there have been no report on the functional differentiation of this gene family at the whole-genome level. This study conducted an exploration of the family members of PLP_deC II at the whole-genome level, identified 16 PLP_deC II genes, and analyzed their gene structure, physicochemical properties, cis-acting elements, phylogenetic evolution, and gene expression patterns. Prokaryotic expression and enzyme activity assays revealed that OeAAD2 and OeAAD4 could catalyze the decarboxylation reaction of tyrosine and dopa, resulting in the formation of their respective amine compounds, but it did not catalyze phenylalanine and tryptophan. Which is an important step in the synthetic pathway of hydroxytyrosol and oleuropein. This finding established the foundational data at the molecular level for studying the functional aspects of the olive PLP_deC II gene family and provided essential gene information for genetic improvement of olive.


Assuntos
Regulação da Expressão Gênica de Plantas , Olea , Álcool Feniletílico , Álcool Feniletílico/análogos & derivados , Filogenia , Olea/genética , Olea/metabolismo , Álcool Feniletílico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Glucosídeos Iridoides/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Fosfato de Piridoxal/metabolismo , Iridoides/metabolismo , Genes de Plantas
5.
Biotechnol J ; 19(4): e2300740, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581087

RESUMO

ß-Phenylethanol (2-PE), as an important flavor component in wine, is widely used in the fields of flavor chemistry and food health. 2-PE can be sustainably produced through Saccharomyces cerevisiae. Although significant progress has been made in obtaining high-yield strains, as well as improving the synthesis pathways of 2-PE, there still lies a gap between these two fields to unpin. In this study, the macroscopic metabolic characteristics of high-yield and low-yield 2-PE strains were systematically compared and analyzed. The results indicated that the production potential of the high-yield strain might be contributed to the enhancement of respiratory metabolism and the high tolerance to 2-PE. Furthermore, this hypothesis was confirmed through comparative genomics. Meanwhile, transcriptome analysis at key specific growth rates revealed that the collective upregulation of mitochondrial functional gene clusters plays a more prominent role in the production process of 2-PE. Finally, findings from untargeted metabolomics suggested that by enhancing respiratory metabolism and reducing the Crabtree effect, the accumulation of metabolites resisting high 2-PE stress was observed, such as intracellular amino acids and purines. Hence, this strategy provided a richer supply of precursors and cofactors, effectively promoting the synthesis of 2-PE. In short, this study provides a bridge for studying the metabolic mechanism of high-yield 2-PE strains with the subsequent targeted strengthening of relevant synthetic pathways. It also provides insights for the synthesis of nonalcoholic products in S. cerevisiae.


Assuntos
Álcool Feniletílico , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Álcool Feniletílico/metabolismo , Multiômica , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vias Biossintéticas , Fermentação
6.
Nutrients ; 16(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38474755

RESUMO

The inflammatory process is triggered by several factors such as toxins, pathogens, and damaged cells, promoting inflammation in various systems, including the cardiovascular system, leading to heart failure. The link between periodontitis as a chronic inflammatory disease and cardiovascular disease is confirmed. Propolis and its major component, caffeic acid phenethyl ester (CAPE), exhibit protective mechanisms and anti-inflammatory effects on the cardiovascular system. The objective of the conducted study was to assess the anti-inflammatory effects of the Polish ethanolic extract of propolis (EEP) and its major component-CAPE-in interferon-alpha (IFN-α), lipopolysaccharide (LPS), LPS + IFN-α-induced human gingival fibroblasts (HGF-1). EEP and CAPE were used at 10-100 µg/mL. A multiplex assay was used for interleukin and adhesive molecule detection. Our results demonstrate that EEP, at a concentration of 25 µg/mL, decreases pro-inflammatory cytokine IL-6 in LPS-induced HGF-1. At the same concentration, EEP increases the level of anti-inflammatory cytokine IL-10 in LPS + IFN-α-induced HGF-1. In the case of CAPE, IL-6 in LPS and LPS + IFN-α induced HGF-1 was decreased in all concentrations. However, in the case of IL-10, CAPE causes the highest increase at 50 µg/mL in IFN-α induced HGF-1. Regarding the impact of EEP on adhesion molecules, there was a noticeable reduction of E-selectin by EEP at 25, 50, and100 µg/mL in IFN-α -induced HGF-1. In a range of 10-100 µg/mL, EEP decreased endothelin-1 (ET-1) during all stimulations. CAPE statistically significantly decreases the level of ET-1 at 25-100 µg/mL in IFN-α and LPS + IFN-α. In the case of intercellular adhesion molecule-1 (ICAM-1), EEP and CAPE downregulated its expression in a non-statistically significant manner. Based on the obtained results, EEP and CAPE may generate beneficial cardiovascular effects by influencing selected factors. EEP and CAPE exert an impact on cytokines in a dose-dependent manner.


Assuntos
Doenças Cardiovasculares , Álcool Feniletílico , Álcool Feniletílico/análogos & derivados , Própole , Humanos , Lipopolissacarídeos/farmacologia , Interleucina-10 , Interferon-alfa , Própole/farmacologia , Cardiotônicos , Interleucina-6 , Álcool Feniletílico/farmacologia , Etanol , Ácidos Cafeicos/farmacologia , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia
7.
J Transl Med ; 22(1): 304, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528569

RESUMO

BACKGROUND: The treatment of spinal cord injury (SCI) has always been a significant research focus of clinical neuroscience, with inhibition of microglia-mediated neuro-inflammation as well as oxidative stress key to successful SCI patient treatment. Caffeic acid phenethyl ester (CAPE), a compound extracted from propolis, has both anti-inflammatory and anti-oxidative effects, but its SCI therapeutic effects have rarely been reported. METHODS: We constructed a mouse spinal cord contusion model and administered CAPE intraperitoneally for 7 consecutive days after injury, and methylprednisolone (MP) was used as a positive control. Hematoxylin-eosin, Nissl, and Luxol Fast Blue staining were used to assess the effect of CAPE on the structures of nervous tissue after SCI. Basso Mouse Scale scores and footprint analysis were used to explore the effect of CAPE on the recovery of motor function by SCI mice. Western blot analysis and immunofluorescence staining assessed levels of inflammatory mediators and oxidative stress-related proteins both in vivo and in vitro after CAPE treatment. Further, reactive oxygen species (ROS) within the cytoplasm were detected using an ROS kit. Changes in mitochondrial membrane potential after CAPE treatment were detected with 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-imidacarbocyanine iodide. Mechanistically, western blot analysis and immunofluorescence staining were used to examine the effect of CAPE on the SIRT1/PGC1α/DRP1 signaling pathway. RESULTS: CAPE-treated SCI mice showed less neuronal tissue loss, more neuronal survival, and reduced demyelination. Interestingly, SCI mice treated with CAPE showed better recovery of motor function. CAPE treatment reduced the expression of inflammatory and oxidative mediators, including iNOS, COX-2, TNF-α, IL-1ß, 1L-6, NOX-2, and NOX-4, as well as the positive control MP both in vitro and in vivo. In addition, molecular docking experiments showed that CAPE had a high affinity for SIRT1, and that CAPE treatment significantly activated SIRT1 and PGC1α, with down-regulation of DRP1. Further, CAPE treatment significantly reduced the level of ROS in cellular cytoplasm and increased the mitochondrial membrane potential, which improved normal mitochondrial function. After administering the SIRT1 inhibitor nicotinamide, the effect of CAPE on neuro-inflammation and oxidative stress was reversed.On the contrary, SIRT1 agonist SRT2183 further enhanced the anti-inflammatory and antioxidant effects of CAPE, indicating that the anti-inflammatory and anti-oxidative stress effects of CAPE after SCI were dependent on SIRT1. CONCLUSION: CAPE inhibits microglia-mediated neuro-inflammation and oxidative stress and supports mitochondrial function by regulating the SIRT1/PGC1α/DRP1 signaling pathway after SCI. These effects demonstrate that CAPE reduces nerve tissue damage. Therefore, CAPE is a potential drug for the treatment of SCI through production of anti-inflammatory and anti-oxidative stress effects.


Assuntos
Ácidos Cafeicos , Doenças Mitocondriais , Álcool Feniletílico , Traumatismos da Medula Espinal , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismo , Ácidos Cafeicos/farmacologia , Ácidos Cafeicos/uso terapêutico , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Metilprednisolona/farmacologia , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/metabolismo , Simulação de Acoplamento Molecular , Estresse Oxidativo/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Álcool Feniletílico/análogos & derivados , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo , Medula Espinal , Traumatismos da Medula Espinal/tratamento farmacológico , Dinaminas/efeitos dos fármacos
8.
Antiviral Res ; 225: 105868, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490343

RESUMO

Porcine Reproductive and Respiratory Syndrome (PRRS) presents a formidable viral challenge in swine husbandry. Confronting the constraints of existing veterinary pharmaceuticals and vaccines, this investigation centers on Caffeic Acid Phenethyl Ester (CAPE) as a prospective clinical suppressant for the Porcine Reproductive and Respiratory Syndrome Virus (PRRSV). The study adopts an integrated methodology to evaluate CAPE's antiviral attributes. This encompasses a dual-phase analysis of CAPE's interaction with PRRSV, both in vitro and in vivo, and an examination of its influence on viral replication. Varied dosages of CAPE were subjected to empirical testing in animal models to quantify its efficacy in combating PRRSV infections. The findings reveal a pronounced antiviral potency, notably in prophylactic scenarios. As a predominant component of propolis, CAPE stands out as a promising candidate for clinical suppression, showing exceptional effectiveness in pre-exposure prophylaxis regimes. This highlights the potential of CAPE in spearheading cutting-edge strategies for the management of future PRRSV outbreaks.


Assuntos
Ácidos Cafeicos , Álcool Feniletílico/análogos & derivados , Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Drogas Veterinárias , Suínos , Animais , Estudos Prospectivos , Drogas Veterinárias/farmacologia , Replicação Viral , Antivirais/farmacologia
9.
Microbiol Spectr ; 12(4): e0227823, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38440972

RESUMO

Candida auris is frequently associated with biofilm-related invasive infections. The resistant profile of these biofilms necessitates innovative therapeutic options, where quorum sensing may be a potential target. Farnesol and tyrosol are two fungal quorum-sensing molecules with antifungal effects at supraphysiological concentrations. Here, we performed genome-wide transcript profiling with C. auris biofilms following farnesol or tyrosol exposure using transcriptome sequencing (RNA-Seq). Since transition metals play a central role in fungal virulence and biofilm formation, levels of intracellular calcium, magnesium, and iron were determined following farnesol or tyrosol treatment using inductively coupled plasma optical emission spectrometry. Farnesol caused an 89.9% and 73.8% significant reduction in the calcium and magnesium content, respectively, whereas tyrosol resulted in 82.6%, 76.6%, and 81.2% decrease in the calcium, magnesium, and iron content, respectively, compared to the control. Genes involved in biofilm events, glycolysis, ergosterol biosynthesis, fatty acid oxidation, iron metabolism, and autophagy were primarily affected in treated cells. To prove ergosterol quorum-sensing molecule interactions, microdilution-based susceptibility testing was performed, where the complexation of farnesol, but not tyrosol, with ergosterol was impeded in the presence of exogenous ergosterol, resulting in a minimum inhibitory concentration increase in the quorum-sensing molecules. This study revealed several farnesol- and tyrosol-specific responses, which will contribute to the development of alternative therapies against C. auris biofilms. IMPORTANCE: Candida auris is a multidrug-resistant fungal pathogen, which is frequently associated with biofilm-related infections. Candida-derived quorum-sensing molecules (farnesol and tyrosol) play a pivotal role in the regulation of fungal morphogenesis and biofilm development. Furthermore, they may have remarkable anti-biofilm effects, especially at supraphysiological concentrations. Innovative therapeutic approaches interfering with quorum sensing may be a promising future strategy against C. auris biofilms; however, limited data are currently available concerning farnesol-induced and tyrosol-related molecular effects in C. auris. Here, we detected several genes involved in biofilm events, glycolysis, ergosterol biosynthesis, fatty acid oxidation, iron metabolism, and autophagy, which were primarily influenced following farnesol or tyrosol exposure. Moreover, calcium, magnesium, and iron homeostasis were also significantly affected. These results reveal those molecular and physiological events, which may support the development of novel therapeutic approaches against C. auris biofilms.


Assuntos
Candida auris , Farneseno Álcool , Álcool Feniletílico/análogos & derivados , Farneseno Álcool/farmacologia , Farneseno Álcool/metabolismo , Cálcio/metabolismo , Cálcio/farmacologia , Magnésio/metabolismo , Magnésio/farmacologia , Biofilmes , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Antifúngicos/metabolismo , Ergosterol , Ferro/metabolismo , Ácidos Graxos/metabolismo , Candida albicans , Testes de Sensibilidade Microbiana
10.
Nutrients ; 16(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542729

RESUMO

In this review, we explored the therapeutic potential of oleuropein (OLE) and hydroxytyrosol (HT) in the treatment of neuroblastoma (NB). NB is an extracranial tumour that predominantly affects children aged between 17 and 18 months. Recurrence and drug resistance have emerged as the biggest challenges when treating NB, leading to a crucial need for new therapeutic approaches. Food of the Mediterranean Diet (MD) presents several health benefits, including that of cancer treatment. In this review, we emphasised olive oil since it is one of the main liquid ingredients of the MD. OLE is the principal phenolic compound that constitutes olive oil and is hydrolysed to produce HT. Considering that tumour cells produce increased amounts of reactive oxygen species, this review highlights the antioxidant properties of OLE and HT and how they could result in increased cellular antioxidant defences and reduced oxidative damage in NB cells. Moreover, we highlight that these phenolic compounds lead to apoptosis and cell cycle arrest, reduce the side effects caused by conventional treatments, and activate tumours that become dormant as a resistance mechanism. Future research should explore the effects of these compounds and other antioxidants on the treatment of NB in vivo.


Assuntos
Glucosídeos Iridoides , Neuroblastoma , Olea , Álcool Feniletílico , Álcool Feniletílico/análogos & derivados , Criança , Humanos , Lactente , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Azeite de Oliva , Fenóis/farmacologia , Álcool Feniletílico/farmacologia , Neuroblastoma/tratamento farmacológico
11.
Food Funct ; 15(7): 3752-3764, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38506160

RESUMO

This study aimed to elucidate the effect of tyrosol (TYR) on the amelioration of nonalcoholic fatty liver disease (NAFLD). Male C57BL/6J mice were fed a low-fat diet (LFD), a high-fat diet (HFD), or a HFD supplemented with 0.025% (w/w) TYR (TYR) for 16 weeks. Following a 16-week intervention, the TYR cohort exhibited diminished final body weight and hepatic lipid accumulation, compared to HFD fed mice. Liver metabolomics analysis revealed that TYR increased the hepatic levels of spermidine, taurine, linoleic acid, malic acid and eicosapentaenoic acid (EPA), indicating the beneficial effect of TYR on lipid homeostasis. Using molecular docking analysis and the luciferase assay, we found that TYR acts as a ligand and binds with peroxisome proliferator-activated receptor-α (PPARα), which plays a pivotal role in the modulation of hepatic lipid metabolism, thereby activating the transcription of downstream genes. Our results suggest that TYR alleviates NAFLD in HFD-fed mice probably by the modulation of the PPARα signaling pathway.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Álcool Feniletílico/análogos & derivados , Humanos , Masculino , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/genética , Metabolismo dos Lipídeos , Dieta Hiperlipídica/efeitos adversos , PPAR alfa/genética , PPAR alfa/metabolismo , Simulação de Acoplamento Molecular , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Lipídeos/farmacologia
12.
J Agric Food Chem ; 72(12): 6250-6264, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38491001

RESUMO

Hydroxytyrosol (HT; 3,4-dihydroxyphenyl ethanol) is an important functional polyphenol in olive oil. Our study sought to evaluate the protective effects and underlying mechanisms of HT on obesity-induced cognitive impairment. A high-fat and high-fructose-diet-induced obese mice model was treated with HT for 14 weeks. The results show that HT improved the learning and memory abilities and enhanced the expressions of brain-derived neurotrophic factors (BDNFs) and postsynaptic density proteins, protecting neuronal and synaptic functions in obese mice. Transcriptomic results further confirmed that HT improved cognitive impairment by regulating gene expression in neural system development and synaptic function-related pathways. Moreover, HT treatment alleviated neuroinflammation in the brain of obese mice. To sum up, our results indicated that HT can alleviate obesity-induced cognitive dysfunction by enhancing BDNF expression and alleviating neuroinflammation in the brain, which also means that HT may become a potentially useful nutritional supplement to alleviate obesity-induced cognitive decline.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Disfunção Cognitiva , Álcool Feniletílico/análogos & derivados , Camundongos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Camundongos Obesos , Doenças Neuroinflamatórias , Obesidade/metabolismo , Encéfalo/metabolismo , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica
13.
J Transl Med ; 22(1): 308, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528541

RESUMO

BACKGROUND: Ulcerative colitisis (UC) classified as a form of inflammatory bowel diseases (IBD) characterized by chronic, nonspecific, and recurrent symptoms with a poor prognosis. Common clinical manifestations of UC include diarrhea, fecal bleeding, and abdominal pain. Even though anti-inflammatory drugs can help alleviate symptoms of IBD, their long-term use is limited due to potential side effects. Therefore, alternative approaches for the treatment and prevention of inflammation in UC are crucial. METHODS: This study investigated the synergistic mechanism of Lactobacillus plantarum SC-5 (SC-5) and tyrosol (TY) combination (TS) in murine colitis, specifically exploring their regulatory activity on the dextran sulfate sodium (DSS)-induced inflammatory pathways (NF-κB and MAPK) and key molecular targets (tight junction protein). The effectiveness of 1 week of treatment with SC-5, TY, or TS was evaluated in a DSS-induced colitis mice model by assessing colitis morbidity and colonic mucosal injury (n = 9). To validate these findings, fecal microbiota transplantation (FMT) was performed by inoculating DSS-treated mice with the microbiota of TS-administered mice (n = 9). RESULTS: The results demonstrated that all three treatments effectively reduced colitis morbidity and protected against DSS-induced UC. The combination treatment, TS, exhibited inhibitory effects on the DSS-induced activation of mitogen-activated protein kinase (MAPK) and negatively regulated NF-κB. Furthermore, TS maintained the integrity of the tight junction (TJ) structure by regulating the expression of zona-occludin-1 (ZO-1), Occludin, and Claudin-3 (p < 0.05). Analysis of the intestinal microbiota revealed significant differences, including a decrease in Proteus and an increase in Lactobacillus, Bifidobacterium, and Akkermansia, which supported the protective effect of TS (p < 0.05). An increase in the number of Aspergillus bacteria can cause inflammation in the intestines and lead to the formation of ulcers. Bifidobacterium and Lactobacillus can regulate the micro-ecological balance of the intestinal tract, replenish normal physiological bacteria and inhibit harmful intestinal bacteria, which can alleviate the symptoms of UC. The relative abundance of Akkermansia has been shown to be negatively associated with IBD. The FMT group exhibited alleviated colitis, excellent anti-inflammatory effects, improved colonic barrier integrity, and enrichment of bacteria such as Akkermansia (p < 0.05). These results further supported the gut microbiota-dependent mechanism of TS in ameliorating colonic inflammation. CONCLUSION: In conclusion, the TS demonstrated a remission of colitis and amelioration of colonic inflammation in a gut microbiota-dependent manner. The findings suggest that TS could be a potential natural medicine for the protection of UC health. The above results suggest that TS can be used as a potential therapeutic agent for the clinical regulation of UC.


Assuntos
Colite Ulcerativa , Colite , Doenças Inflamatórias Intestinais , Lactobacillus plantarum , Álcool Feniletílico/análogos & derivados , Simbióticos , Animais , Camundongos , Colite Ulcerativa/tratamento farmacológico , Azeite de Oliva , NF-kappa B , Ocludina , Modelos Animais de Doenças , Colite/induzido quimicamente , Inflamação/complicações , Inflamação/tratamento farmacológico , Colo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Sulfato de Dextrana/efeitos adversos , Camundongos Endogâmicos C57BL
14.
ACS Appl Bio Mater ; 7(3): 1449-1468, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38442406

RESUMO

This study introduces a tyrosol-loaded niosome integrated into a chitosan-alginate scaffold (Nio-Tyro@CS-AL), employing advanced electrospinning and 3D printing techniques for wound healing applications. The niosomes, measuring 185.40 ± 6.40 nm with a polydispersity index of 0.168 ± 0.012, encapsulated tyrosol with an efficiency of 77.54 ± 1.25%. The scaffold's microsized porous structure (600-900 µm) enhances water absorption, promoting cell adhesion, migration, and proliferation. Mechanical property assessments revealed the scaffold's enhanced resilience, with niosomes increasing the compressive strength, modulus, and strain to failure, indicative of its suitability for wound healing. Controlled tyrosol release was demonstrated in vitro, essential for therapeutic efficacy. The scaffold exhibited significant antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus, with substantial biofilm inhibition and downregulation of bacterial genes (ndvb and icab). A wound healing assay highlighted a notable increase in MMP-2 and MMP-9 mRNA expression and the wound closure area (69.35 ± 2.21%) in HFF cells treated with Nio-Tyro@CS-AL. In vivo studies in mice confirmed the scaffold's biocompatibility, showing no significant inflammatory response, hypertrophic scarring, or foreign body reaction. Histological evaluations revealed increased fibroblast and macrophage activity, enhanced re-epithelialization, and angiogenesis in wounds treated with Nio-Tyro@CS-AL, indicating effective tissue integration and repair. Overall, the Nio-Tyro@CS-AL scaffold presents a significant advancement in wound-healing materials, combining antibacterial properties with enhanced tissue regeneration, and holds promising potential for clinical applications in wound management.


Assuntos
Quitosana , Álcool Feniletílico/análogos & derivados , Camundongos , Animais , Quitosana/farmacologia , Quitosana/química , Lipossomos , Alginatos/farmacologia , Alginatos/química , Cicatrização , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Impressão Tridimensional
15.
J Food Sci ; 89(3): 1684-1700, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38317409

RESUMO

The retronasal aroma of Baijiu is closely related to its quality and consumer preference. Retronasal detection thresholds (RDTs) of 44 aroma compounds were determined in 46% v/v ethanol using a three-alternative forced-choice procedure, which varied widely and ranged from less than 0.02 to over 1,000,000 µg/L. Nineteen aroma compounds, including ß-phenylethanol, 2,3,5,6-tetramethylpyrazine, dimethyl trisulfide, and 2-methyl-3-(methyldisulfanyl)furan, had RDTs lower than their orthonasal detection thresholds. Power function curves were used to establish correlations between RDTs and partition coefficients for five esters and four pyrazines (R2  = 0.9575, 0.9969, respectively). Twenty-nine aroma compounds had retronasal odor activity values >1 in a soy sauce aroma type Baijiu. Additionally, time-intensity (TI) results suggested that hexanoic acid, ethyl hexanoate, isoamyl acetate, 3-methyl-butanal, and nonanal contributed to a "burst-aroma" of Baijiu. Conversely, TI results attributed the "after-odor" of Baijiu to dimethyl trisulfide, methional, 2,3,5,6-tetramethylpyrazine, ß-phenylethanol, and other compounds. PRACTICAL APPLICATION: This manuscript provides comprehensive information on the retronasal sensory characteristics of aroma compounds in Baijiu. The results obtained may help understand the contribution of aroma compounds to retronasal aroma perception during Baijiu tasting and give helpful information to the Baijiu industry regarding quality control.


Assuntos
Álcool Feniletílico , Sulfetos , Compostos Orgânicos Voláteis , Odorantes/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Percepção Gustatória , Compostos Orgânicos Voláteis/análise
16.
Artigo em Inglês | MEDLINE | ID: mdl-38394917

RESUMO

Due to three free hydroxyl groups, hydroxytyrosol (HT) presents strong bioactivity and has broad food and drug application prospects. However, there is no good separation and purification technology. In this study, separation and purification technology of HT from the ethyl acetate extraction of enzymatic hydrolysate from olive leaf (EEEH) was investigated with macroporous adsorption resin (MAR) and high-speed counter-current chromatography (HSCCC) and the separation factors were optimized. First, the adsorption properties of eight MARs (AB-8, S-8, D-101, X-5, XAD-1, XAD-5, NKA-Ⅱ, H-103) for HT enrichment were studied. The results showed that H-103 macroporous resin was adsorbent, sample concentration was 1.5 mg/mL, eluent was 30 % ethanol solution, sample loading rate was 3.0 BV/h, elution velocity was 2.0 BV/h, and HT purity of EEEH was increased from 10.23 % to 40.78 %. Then, solvent systems were examined according to partition coefficients of target component and petroleum ether: ethyl acetate: methanol: water (4:6:4:6, v/v) system was chosen. The critical experimental parameters of HSCCC were optimized as following: revolution speed was 1200 rpm and flow rate was 3 mL/min. The HT purity of macroporous resin purified EEEH was increased from 40.78 % to 85.7 %. Therefore, MAR-HSCCC combined technology could be a very effective approach to separate and purify HT from EEEH.


Assuntos
Acetatos , Olea , Álcool Feniletílico/análogos & derivados , Adsorção , Solventes , Cromatografia , Folhas de Planta , Distribuição Contracorrente/métodos , Cromatografia Líquida de Alta Pressão/métodos
17.
ACS Synth Biol ; 13(3): 816-824, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38365187

RESUMO

Candida glycerinogenes is an industrial yeast with excellent multistress resistance. However, due to the diploid genome and the lack of meiosis and screening markers, its molecular genetic operation is limited. Here, a gene editing system using the toxin-antitoxin pair relBE from the type II toxin-antitoxin system in Escherichia coli as a screening marker was constructed. The RelBE complex can specifically and effectively regulate cell growth and arrest through a conditionally controlled toxin RelE switch, thereby achieving the selection of positive recombinants. The constructed editing system achieved precise gene deletion, replacement, insertion, and gene episomal expression in C. glycerinogenes. Compared with the traditional amino acid deficiency complementation editing system, this editing system produced higher biomass and the gene deletion efficiency was increased by 3.5 times. Using this system, the production of 2-phenylethanol by C. glycerinogenes was increased by 11.5-13.5% through metabolic engineering and tolerance engineering strategies. These results suggest that the stable gene editing system based on toxin-antitoxin pairs can be used for gene editing of C. glycerinogenes to modify metabolic pathways and promote industrial applications. Therefore, the constructed gene editing system is expected to provide a promising strategy for polyploid industrial microorganisms lacking gene manipulation methods.


Assuntos
Antitoxinas , Toxinas Bacterianas , Álcool Feniletílico , Pichia , Edição de Genes/métodos , Antitoxinas/genética , Toxinas Bacterianas/genética , Escherichia coli/genética , Escherichia coli/metabolismo
18.
Food Chem ; 444: 138516, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38306771

RESUMO

In this study, the phytochemical profile of fifty olive leaves (OL) extracts from Spain, Italy, Greece, Portugal, and Morocco was characterized and their anti-cholinergic, anti-inflammatory, and antioxidant activities were evaluated. Luteolin-7-O-glucoside, isoharmnentin, and apigenin were involved in the acetylcholinesterase (AChE) inhibitory activity, while oleuropein and hydroxytyrosol showed noteworthy potential. Secoiridoids contributed to the cyclooxygenase-2 inhibitory activity and antioxidant capacity. Compounds such as oleuropein, ligstroside and luteolin-7-O-glucoside, may exert an important role in the ferric reducing antioxidant capacity. It should be also highlighted the role of hydroxytyrosol, hydroxycoumarins, and verbascoside concerning the antioxidant activity. This research provides valuable insights and confirms that specific compounds within OL extracts contribute to distinct anti-cholinergic, anti-inflammatory, and anti-oxidative effects.


Assuntos
Antioxidantes , Glucosídeos Iridoides , Olea , Álcool Feniletílico/análogos & derivados , Antioxidantes/química , Acetilcolinesterase , Olea/química , Ciclo-Oxigenase 2 , Extratos Vegetais/química , Iridoides/análise , Compostos Fitoquímicos/análise , Folhas de Planta/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/análise , Antagonistas Colinérgicos/análise
19.
Food Res Int ; 179: 113941, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342554

RESUMO

Fermented vegetables are known for their unique flavors and aromas, which are influenced by the complex microbial processes that occur during fermentation. Rhodotorula mucilaginosa is a red yeast strain that is frequently isolated from fermented vegetables. However, the specific mechanisms underlying their effects on aroma production remain unclear. In this study, a simulated system of vegetables fermented using vegetable juices was used to investigate the effects of R. mucilaginosa inoculation on aroma development. The results demonstrated that this red yeast strain could utilize the nutrients present in the vegetable juices to support its growth and reproduction. Moreover, the inoculation of fermented vegetable juices with this yeast strain led to an increase in the levels of umami amino acids and sweet amino acids. Furthermore, this yeast strain was found able to significantly reduce the content of sulfur-containing compounds, which may decrease the unpleasant odor of fermented vegetables. Additionally, the yeast strain was capable of producing high concentrations of aromatic compounds such as phenylethyl alcohol, methyl 2-methylbutyrate, methyl butyrate, and nonanoic acid in a minimum medium. However, only phenylethyl alcohol has been identified as a core aromatic compound in fermented vegetable juice. The three fermented vegetable juices exhibited significantly different flavor profiles according to comparative analysis. Therefore, the core flavor compounds found in fermented vegetables are primarily derived from the release and modification of endogenous flavors naturally present in the vegetables, facilitated by the yeast during fermentation.


Assuntos
Produtos Biológicos , Álcool Feniletílico , Rhodotorula , Odorantes/análise , Verduras , Álcool Feniletílico/análise , Leveduras , Aminoácidos
20.
J Biochem Mol Toxicol ; 38(2): e23652, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38348708

RESUMO

Hydroxytyrosol (HT) or dimethyl fumarate (DMF), activators of nuclear factor erythroid 2-related factor 2 (Nrf2), may reduce obesity in high-fat diet (HFD)-fed animals; nevertheless, the role of these activators on skin tissue repair of HFD-fed animals was not reported. This study investigated whether HT or DMF could improve skin wound healing of HFD-fed obese animals. Mice were fed with an HFD, treated with HT or DMF, and full-thickness skin wounds were created. Macrophages isolated from control and obese animals were treated in vitro with HT. DMF, but not HT, reduced the body weight of HFD-fed mice. Collagen deposition and wound closure were improved by HT or DMF in HFD-fed animals. HT or DMF increased anti-inflammatory macrophage phenotype and protein Nrf2 levels in wounds of HFD-fed mice. Lipid peroxidation and protein tumor necrosis factor-α levels were reduced by HT or DMF in wounds of HFD-fed animals. In in vitro, HT stimulated Nrf2 activation in mouse macrophages isolated from obese animals. In conclusion, HT or DMF improves skin wound healing of HFD-fed mice by reducing oxidative damage and inflammatory response. HT or DMF may be used as a therapeutic strategy to improve the skin healing process in individuals with obesity.


Assuntos
Dieta Hiperlipídica , Fumarato de Dimetilo , Álcool Feniletílico/análogos & derivados , Camundongos , Animais , Dieta Hiperlipídica/efeitos adversos , Fumarato de Dimetilo/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...